If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=42
We move all terms to the left:
w^2-(42)=0
a = 1; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·1·(-42)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*1}=\frac{0-2\sqrt{42}}{2} =-\frac{2\sqrt{42}}{2} =-\sqrt{42} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*1}=\frac{0+2\sqrt{42}}{2} =\frac{2\sqrt{42}}{2} =\sqrt{42} $
| 1.75+10=3.5x-16.25 | | 38/8x=15/6 | | F(34)=3x+19 | | 35/8x=15/16 | | 7-2(10x-3)=33 | | 2|4x-1|+1=11 | | 8x+10-3x=8x+4 | | 8x+4=4(2x4 | | 3+4.5(2d-)=7.5 | | 4/3/8x=15/16 | | 1/3(12x—3)=7 | | 7(y+1)=3y+1 | | 4h+6-h-4=10+h-2 | | -0.20x-18=2 | | -19—-13j=-18 | | -8=-x/5-2 | | 13x3+17/8=7 | | a=2+11/12 | | 8+3y+5=14 | | 12(5x+10)-120=10(5x-20)+80 | | -5(3x-23)=2(x-11)-67 | | x+7x5=55 | | 3n−5=−26 | | 2x1=5x–8 | | -12a+28-6=-13 | | m+24=21 | | 8x–15=56 | | -4x-19=-5x | | 13/7x=13/14 | | X/4^x=50 | | -11(-2z+7)=7z-10 | | (4x+5)/(2x-10)-(6x^2+75)/(3x^2-75)=0 |